Littlewood-Offord Inequalities for Random Variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Littlewood-Offord Inequalities for Random Variables

The concentration of a real-valued random variable X is c(X) sup P(t < X < + 1). Given bounds on the concentrations of n independent random variables, how large can the concentration of their sum be? The main aim of this paper is to give a best possible upper bound for the concentration of the sum of n independent random variables, each of concentration at most 1/k, where k is an integer. Other...

متن کامل

SOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES

In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...

متن کامل

Maximal Inequalities for Associated Random Variables

In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].

متن کامل

Optimal Inverse Littlewood-offord Theorems

Let ηi, i = 1, . . . , n be iid Bernoulli random variables, taking values ±1 with probability 1 2 . Given a multiset V of n integers v1, . . . , vn, we define the concentration probability as ρ(V ) := sup x P(v1η1 + . . . vnηn = x). A classical result of Littlewood-Offord and Erdős from the 1940s asserts that, if the vi are non-zero, then ρ(V ) is O(n−1/2). Since then, many researchers have obt...

متن کامل

The Littlewood-offord Problem and Invertibility of Random Matrices

We prove two basic conjectures on the distribution of the smallest singular value of random n×n matrices with independent entries. Under minimal moment assumptions, we show that the smallest singular value is of order n−1/2, which is optimal for Gaussian matrices. Moreover, we give a optimal estimate on the tail probability. This comes as a consequence of a new and essentially sharp estimate in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 1994

ISSN: 0895-4801,1095-7146

DOI: 10.1137/s0895480191221866